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ABSTRACT

In this paper, a space-position-logic-encoding scheme is proposed, which not only makes best use of the
convenience of binary logic operation, but is also suitable for the trinary property of modified signed-digit

~ numbers. Based on the space-position-logic-encoding scheme, a fully parallel modified signed-digit adder

and subtracter is built by use of optoelectronic switch and microstructure interconnect technologies. Thus an
effective combination of a parallel algorithm and a parallel architecture is implemented Finally, both
simulation results and experimental results are provided.

1. INTRODUCTION

There are two options to develop parallel digital optical computing systems: one is to research the carry-
free or carry-limited parallel algorithm, the other is to research the optical implementing architecture. Of
course, the best selection is an effective combination of these two options. The modified signed-digit (MSD)
algorithm is an effective carry-free or carry-limited algorithm, and symbolic substitution is an optical parallel
implementing approach; thus an optical MSD parallel computing system based on symbolic substitution is a
typical example of a combination of a parallel algorithm and a parallel implementing approach[1-5]. In fact,
the important factor of the realization of the conversion from algorithm to the hardware is having an effective
encoding scheme. However, in the parallel optical computing systems, in terms of the proposed optical
pattern encoding and optical polarization encoding for symbolic substitution, the space size taken by each
operand bit cannot be made very small, which limits the miniaturization and integration of MSD optical
computing systems. In addition, both substitution rules and optical approaches for implementing the rules
are generally difficult, which limits the further development of multibit parallel MSD optical computing
systems. Multi-dimensional optical interconnection is another important parallel implementing approach in
digital optical computing which can help the switches to complete logic operations as well as implementing
data transportation and switching. In digital optical computing, perfect shuffle, crossover, and butterfly are
three typical regular interconnect networks[6-8]. Butterfly, especially, has been verified to be the most
suitable for optical implementation[9]. The purpase of this paper is to discuss implementation based on the
effective combination of the MSD algorithm and the butterfly interconnection architecture by use of a space-
position-logic-encoding (SPLE) scheme, which exploits both the carry-free property of the MSD algorithm
and the convenience of binary logic operation with optoelectronic logic technology. Finally a 3-bit
experimental model of paralle] adder and subtracter based on MSD algorithm and finer interconnect
technologiy is built and correct experimental results are provided.
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2, MSD ALGORITHM REVIEW
An MSD number can be written as

D, =1,0,1] 1
where 1 represents —1. Then each decimal number can be represented in the MSD number system by the
coefficients of the polynomial:
D,, =[1,0,1]2"" +...+{1,0,1]2" +...+{1,0,1]2° )

For two MSD numbers, X, (= X,_,....X,,...,X;) and Y, (=7, _,.....Y;,....,Y,), the addition can be
performed through a three-step operation[1,2]. At the first step, a weight digit W,and a transfer digit T,,, are

i+l

produced by Eq.(3):
X +Y =2T, ,+W, (3)
where all the values of T,,, and W, are determined by their truth-tables as shown as Fig.1(a) and Fig.1(b),
respectively.
T W
1111110 ajo|ifo
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(@ ®)
Fig. 1. Truth tables of the first-step operation of MSD addition: (a) for transfer digits T, (b) for weight
digits W.

At the second step, another pair of weight digit W, and transfer digit T,,, are produced by Eq.(4):

W,+T,=2T,, +W, 4)
where all the values of T;,, and W, are determined by their truth-tables as shown in Fig.2(a) and Fig.2(b),
respectively.
T w
{11010 110 {1 0
; 0] 0 0 0 ol 0 1
| iloo}i ilo]i}o
10 i 0
@ ®)
Fig. 2. Truth tables of the second-step operation of MSD addition: (a) for transfer digits T, (b) for weight
digits W'.
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The third step generates the final sum digit S;:

S,=W,+T,, (5)

S(=T)
111 o
011 0 i
! [4] 1 i
1 0 1
Fig. 3. Truth tables of the third-step Fig. 4. Butterfly architecture implementing
operation of MSD addition: 3-bit MSD addition and subtraction.

for the final sum S.

where all the values of S, are given by the truth-table as shown in Fig. 3, which is the same as Fig.1(a). In
terms of the three step operations of MSD addition, the MSD addition of two 3-bit digits can be depicted in
the butterfly interconnection architecture as shown in Fig. 4, where X(= X,X,X,) and Y(= Y,Y\Y,) are
augend and addend, respectively, and Z(= Z,2,Z Z,) is the final addition result.

As described above, the difference between MSD digit and binary digit is that binary digit has only the

. two digits of 1 and 0, while MSD digit has the three digits of 1, 0, and 1, respectively. Therefore, it does
not like the binary digit to take higher and lower voltages as an encoding scheme. In digital optical
computing, because of optical property and the symbolic substitution theorem, pattern encoding, polarization
encoding[2-4], and other encoding schemes[10] occur successively. In this section we propose a space-
position-logic-encoding (SPLE) scheme as shown in Fig. 5, in which three different space positions, A, B,
and C (or a, b, and c), are used to represent 1, 0, and 1 of MSD digits in which three light-emitting diodes
(LEDs) or laser diodes (LDs) at A, B, and C (or a, b, and c) represent only one MSD bit; namely, only one
LED or LD has a light signal, and a light signal at a different position of the ith bit represents a different
value. For example, the light signal of the LED or the LD at position A of the X; bit represents X;=1, and at

the same time, the LEDs or LDs at positions B and C of the X; bit have no light signals; the light signal of
the LED or the LD at position B of X; bit represents X,=0, and at the same time, the LEDs or the LD:s at
position A and C of the X, bit have no light signals; the light signal of the LED or the LD at position C of X,

bit represents X,=1, and at the same time, the LED or the LD at positions A and B of the X, bit have no light
signals. Thus each space position has two states, either having a light signal or having no light signal, which
is similar to the logic operations of the binary algorithm. Therefore we call the encoding scheme a space-
position-logic-encoding (SPLE) scheme. Then with the SPLE scheme the truth-tables for the three
‘operations of MSD additions as shown in Figs. 1, 2, and 3 become the new forms as shown in Figs. 6, 7,
and 8, where any table has nine states, i.e., the nine combinations of the three digits (A, B, and C) of
augend X; and the three digits (a, b, and ¢) of addend Y;. The three digits of augend are arranged in a
column and three digits of addend are arranged in a row, as shown in Figs. 6, 7, and 8. Of course, each
state is an AND result of two digits.

SPIE Vol. 24007/ 279



X Y Fig. 5. Space-position-logic-encoding
(SPLE) scheme in which three space
position codes, A, B, and C (or a, b,

1 0 1 1 0 1
@@ @ @@ and c), stand for 1, 0, and 1.
.

w
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Fig. 6. Truth tables of the first-step operation of MSD addition represented by the SPLE scheme: (a) for
transfer digits T, (b) for weight digits W.
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Fig. 7. Truth tables of the second-step operation of MSD addition represented by the SPLE scheme: (a) for
transfer digits T", (b) for weight digits W' .
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Fig. 8. Truth tables of the third-step operation Fig. 9. Unitary detecting array,
of MSD addition represented by the SPLE where G, G,, ..., G, are nine
scheme for the final sum S. detecting elements.

4. BUTTERFLY INTERCONNECT ARCHITECTURE

In terms of all the truth tables of MSD addition expressed in the SPLE scheme, any table has nine states
and each state is an AND result of two digits from a row and a column, respectively. Thus we can use a
unitary switch module including nine detecting elements to stand for all the truth tables of MSD addition, as

shown in Fig. 9, in which all the detecting elements (G;s...,G,) can be used for the nine states of any truth
table. It can be noted that G, is the detecting element for the AND operation of A and a, G, is the detecting

element for the AND operation of A and b, and so forth, until G, is the detecting element for the AND

operation of C and c. To build a multilayer butterfly interconnection architecture corresponding to the
multibit computing, we use the most basic butterfly to represent the nine AND operations (Fig. 9) of augend

”
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digits (A, B, and C) and addend digits (a, b, and c) as shown in Fig. 10. It can be noted with ease that the
nine combinations come from 11 pairwise combinations of 12 operand digits ( double A, B, C and a, b, ¢).
This butterfly interconnect architecture is the easiest because all the interconnection operations are performed
between two adjacent nodes, and it is especially suitable for the microstructures such as grating and
waveguide.

Gg Gz| | Gy| | Gaf | Gs| | Gg| | Go] | G G,

Fig. 10. Corresponding architecture of operands (A, B, and C; a, b, and ¢) represented by the simplest
butterfly interconnection.

The AND results from the nine detecting elements on the detectin g planes of modules can drive several -
LED:s or LDs on the light-emitting planes, which give light signals for the next operations. The arrangement
of all the possible light signals (A, B, and C; a, b, and ¢) on the light-emitting planes of modules is the same
as that in Fig. 10, but only the detecting elements receiving two light signals can perform AND operations
and make their LEDs or LDs produce light signals at the correponding positions. Figures 11(a), 11(b), and

- 11(c) represent the operating examples of X,=1 and ¥,=0, W.=1and T,=0, and W,=1 and T;=0,

!

respectively. Obviously each MSD bit addition is completed through three stages of the simplest butterfly
interconnections and three operations, as shown in Fig. 11, where hatched circles indicate having light
signals and hollow circles indicate having no light signals. For the first stage of operations, as shown in Fig.

11(a), if X;=1 and Y;=0, i.e., A, and b, have light signals, then only the detecting element G, can receive
two light signals and perform AND operations and can drive its next-stage LED's or LD's a of T,, and Cof
W, for the next stage of operations according to Figs. 6(a) and 6(b), respectively. For the second stage of
operations, as shown in Fig. 11(b), if W,=1 and T,=0, i.e., A; and b, have light signals, then only the
detecting element G, can receive two light signals and perform AND operations and can drive its next-stage
LED's or LD's b of T, and A of W, for the next stage of operations according to Figs. 7(a) and 7(b),

i+1
respectively. For the third stage of operations, as shown in Fig. 11(c), if W;=1 and T,=0, ie., A and b,
have light signals, then only the detecting element G, can receive two light signals and perform AND
operations and can drive its next-stage LED's or LD's a of S; of the ith bit according to Fig. 8. The
interconnections among all the operand bits can be performed according to the standard butterfly structure as
shown in Fig. 4, which can be implemented by use of electrical interconnection within the switch modules.
The interconnections among the 12 digits of two groups of operand digits can be completed by use of optical
interconnection. Therefore with the SPLE scheme and the simplest butterfly interconnections a fully parallel
MSD adder can be constructed by use of three stages of optical butterfly interconnection and four switch
modules, M,, M,, M,, and M,, which can complete logic operations and signal arrangements, as shown

in Fig. 12. With the SPLE scheme, the MSD subtraction can also be performed as MSD addition by use of

the complement of the subtrahend, i.e., with 1 as 1, 1 as 1, and 0 as 0 in the subtrahend. Therefore the
MSD architecture in this paper is really a parallel optoelectronic MSD adder and subtracter.
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- Fig. 11. Operation examples of an MSD adder and subtracter: (@ X;=1,Y,=0;(b) W, =1, T, =0; (c)

W, =1, T, =0. Hatched circles indicate having light signals, and hollow circles indicate having no light
signals.

(b)

Fig. 12. Architecture of an optoelectronic MSD adder and subtracter: four switch modules and three stages

of the simplest butterfly interconnection. (a) construction; (b) the circuit of a switch cell. 1 photo-diode: 2
modifier; 3 electronic gate device; and 4 LEDs.

282/ SPIE Vol. 2400




5. EXPERIMENTS

With optoelectronic and fiber interconnect technologies, an experimental model of 3-bit optoelctronic
parallel MSD adder and subtracter has been built by us as shown in Fig. 13, and the correct experimental
results have been obtained.

Fig. 13. Experimental model of 3-bit MSD adder and subtracter by use of optoelectronic logic and fiber

interconnection technologies.
‘X + Y z
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Fig. 14. Simulation and experimental results of an MSD addition (6),, +(5),, = (110) 5 + (101),5p

X - Y 7
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Fig. 15. Simulation and experimental results of an MSD subtraction (Do = (5)yp = (111),5p + (101),5,

SPIE Vol. 2400/ 283



For example, for the addition of 6 and 5, (6)y9 +(5);p = (11),, can also be written as (110)5p + (101),;

the simulation input signals, the simulation addition results, and their experimental results are obtained as
shown in Fig. 14(a), 14(b), and 14(c), respectively, where filled circles indicate having light signals and
hollow circles indicate having no light signals. It can be noted from Figs. 14(b) and 14(c) that both

simulation and experimental results are (1 101),5p = (1 1),4, which are obviously correct. For the subtraction
of 7and 5, (7)y, = (S),, = (2),, can also be written as (11 Dusp +(101),5p; the simulation input signals, the
simulation subtraction results, and their experimental results are obtained as shown in Figs. 15(a), 15(b),

and 15(c), respectively, where filled circles indicate having light signals and hollow circles indicate having
no light signals. It can be noted from Figs. 15(b) and 15(c) that both simulation and experimental results are

(0110Yysp = (2),,, which are obviously correct.

6. SUMMARY AND CONCLUSIONS

In this paper, we discuss the characteristics of three stages of operations of MSD addition, and on this
basis we propose a space-position-logic-encoding(SPLE) scheme that not only makes best use of the

convenience of binary logic operation but is also suitable for the trinary property of 1,0, and 1 in MSD
digits. According to the truth tables of all the operations of MSD addition, we propose a unitary

optoelectronic switch module including nine detecting elements (G;,...,G;) to implement nine AND
operations of any truth table, and on this basis we build the simplest butterfly

fully parallel MSD adder and subtracter. This butterfly network is two dunen‘.’smr;al; one plmens1pn is for

optically. Finally, the simulation and the experimental results of MSD addition and subtraction are given.
Therefore we have implemented the effective combination of a parallel carry-free algorithm (MSD) and a
parallel implementing architecture (optical multilayer butterfly interconnection), which is a new approach of

digital optical computing.
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